MEMS Programs at DARPA

William C. Tang, Ph. D.

MEMS Program Manager

Microsystems Technology Office

Defense Advanced Research Projects Agency

(703) 696-2254

wtang@darpa.mil

http://www.darpa.mil/MTO/MEMS

Outline

- ◆ Introduction
- ◆ Current Thrusts
- ◆ New Programs
- ◆ Conclusion

DARPA Mission

Information Systems

Information Technology

Microsystems Technology

Special Projects

Radical Innovation in Support of National Security

Defense Science

Tactical Technology

Advanced Technology

Strategy

- Find and exploit externally generated ideas
- Invest in high-risk, high-focus projects
- Promote fair and healthy competition

Microsystems Technology Office

Technology for Chip-Level Integration of E. P. M.

MEMS – A Core Technology

Micro-Electro-Mechanical Systems (MEMS) is a core technology that:

Builds ultra-miniaturized components

Enables radical new system applications

MEMS – A Core Technology

◆ Future of MEMS:

System needs will define research in devices and fabrication

MEMS Technologies

- Bulk Micromachining
- Surface Micromachining
- Wafer Bonding
- LIGA/SLIGA and LIGA-Like
- Others
 - Micro EDM
 - 3-D Lithography
 - Laser Micromachining

Anisotropic Wet Etching of Silicon

Deep Reactive Ion Etching (DRIE)

Etch

Deposit Polymer

20 µm

Trenches - Surface Technology Systems

Spring - Klaassen, et al, 1995

Surface Micromachining

Deposit & pattern oxide

Deposit & pattern poly

Anchor Cantilever

Si substrate

Sacrificial etch

Oxide 10 µm Si substrate

LIGA Process

Advantages of MEMS

Outline

- ◆ Introduction
- ◆ Current Thrusts
- ◆ New Programs
- ◆ Conclusion

Pressure Sensor Belt on Jet Planes

MEMS Actuators for Aero Control

MEMS Actuator Array on the Leading Edge of Wing of 1/7 Scale Mirage III Fighter

UCLA and Aerovironment

MEMS-Enhanced Jet Engine

Micro heat fins of nickel rods 150 μ m diameter, 500 μ m tall, spaced on 1.0 mm centers on a 1.7 cm diameter rod. (LSU)

Micro resonant strain gage with over 10,000x sensitivity of metal foil strain gages. Nominal sensitivity 600Hz/μstrain. (UCB)

Standoff Chemical Sensing

- A new concept for a programmable, dark-field correlation spectrometer based on a MEMS diffraction grating.
- Leads to development of a miniature, programmable remote chemical detection system for field use.

MEMS Sensor for Munitions

Rate Grade Inertial MEMS

Angular Rate Sensor Ground Tests

MK-66 Ricket Motor

MI51 HE Warhead

LCPK Guidance
Assembly

M423 Fuze
Pall Bearing
Assembly

Forward Sensor
Control Actuation
System

Guidance/Sensor
Electronics

Conceptual Layout

2.75" Rocket - Low Cost Precision Kill

MEMS Safe/Arm/Fuse for Torpedoes

Inertial Measurement Unit Rate Sensor

Slapper Detonator (mounted on strip-line)

Slapper Fire-set Fire-set and Optical Charging Circuit

Flow Sensor: Pressure Differential

Impact Sensor

MEMS Exploder 7 cu in

MK 48 Exploder

- 17X reduction in volume &
- 4X reduction in production cost

118 cu in

Approved for Public Release - Distribution Unlimited

Indian Head Division

Slide 20

Sonoelectronics (ATO)

Pico Satellite Potential Applications

- Cooperative constellations
- Sparse aperture antennas
- Inspect and service missions
- Extremely agile launch-on-demand, short-term, survivable and robust communications and surveillance space systems

PicoSAT Aboard Stanford OPAL Satellite

♦ First demonstration:

- Launched by first flight of Minotaur 26 Jan 2000 (sponsored by Air Force and Missile System Center)
- Two PICOSAT linked by 30-m-long tether jettisoned from a mother ship, OPAL (Stanford), 7 Feb 2000
- Operate MEMS RF switches in space

MEMS in Pico Satellites

Pico Satellite Data Hopping Demo

MEMS RF switch (Rockwell)

Picosat 3

Pico Satellite (Aerospace Corp)

MEMS Actuators for Data Storage

Parallel atomic force imaging with MEMS to exceed densities of conventional magnetic and optical storage

Areal density: 1-100 Gb/cm² Transfer Rates: 0.1-10 Mb/s

Size: 0.5 cm³

Power consumption: <1W

MEMS-Replaceable Transceiver Components

<u>Current Cell Phone Board</u> Off-chip C & L = 80% of area

✓ Replace all off-chip passive elements with MEMS resonators & filters ▷ chip-scale integration & improved performance

92 MHz Free-Free Beam µ-Resonator

Free-free beam µ-mechanical resonator with non-intrusive supports → reduce anchor dissipation → higher Q

Tunable RF Filters for Multi-Band Communications

High-Q Inductors

MEMS Tunable Filter

Tunable Filters

Capacitor Up

Dielectric layer

MEMS Variable Capacitors

Advanced Digital Receiver (ATO)

Digital IF w/ Bandpass Sampling

Outline

- **→** Introduction
- ◆ Current Thrusts
- ◆ New Programs
 - ➤ MEMS Power Source
 - Harsh-environment MEMS
 - ➤ BioFlips
- ◆ Conclusion

High-Energy-Density MEMS Power

Energy Density (W-hr/Kg)

Honeywell Knock Engine Concept (New Start)

Integrated Fuel Cell and Fuel Processor for Microscale Power Generation (Battelle)

Objectives

- Demonstrate a 10 milliwatt fuel processor operating with clean liquid fuels (24 months)
- Demonstrate a 10 milliwatt fuel cell (24 months)
- Demonstrate a 50 milliwatt fuel processor operating with logistics fuels (36 months)

Concept - Fuel Cell

Swiss Roll Combustor (USC)

3-D toroidal Swiss roll microcombustor/generator

MEMS Flight Control for Projectiles

ARL Computational Fluid Dynamics Codes

- Understand basic aerodynamic characteristics for flow control
- Investigate "where" jets could be placed for various effects

Pressure Contours 40mm Grenade, M = 0.25

Expanded View of Synthetic Jet from GaTech

PIV Data of Modulated Microjet Array

Fluid Mechanics Research Laboratory

"BioFlips"—Integrated Microfluidic System for Bio-Chemical Assay

Outline

- ◆ Introduction
- **→** Current Thrusts
- ◆ New Programs
- ◆ Conclusion

MEMS Market and Industry

Technology Area	Typical Devices/ Applications	Companies	Market Baseline (\$Millions)	Market 2003 (Est.) (\$Millions)
Inertial Measurement	Accelerometers, Rate Sensors, Vibration Sensors	TI, Sarcos, Boeing, ADI, EG&G IC Sensors, AMMi, Motorola, Delco, Breed, Systron Donner, Honeywell, Allied Signals	\$350-\$540	\$700-\$1400
Microfluidics and Chemical Testing/ Processing	Gene Chip, Lab on Chip, Chemical Sensors, Flow Controllers, Micronozzles, Microvalves	Battelle, Sarnoff, Microcosm, ISSYS, Berkeley MicroInstruments, Redwood, TiNi Alloy, Affymetrix, EG&G IC Sensors, Motorola, Hewlett Packard, TI, Xerox, Canon, Epson	\$400-\$550	\$3000-\$4450
Optical MEMS (MOEMS)	Displays, Optical Switches, Adaptive Optics	Tanner, SDL, GE, Sarnoff, Northrop- Grumman, Westinghouse, Interscience, SRI, CoreTek, Lucent, Iridigm, Silicon Light Machines, TI, MEMS Optical, Honeywell	\$25-\$40	\$450-\$950
Pressure Measurement	Pressure Sensors for Automotive, Medical, and Industrial Applications	Goodyear, Delco, Motorola, Ford, EG&G IC Sensors, Lucas NovaSensor, Siemens, TI	\$390-\$760	\$1100-\$2150
RF Technology	RF switches, Filters, Capacitors, Inductors, Antennas, Phase Shifters, Scanned Apertures	Rockwell, Hughes, ADI, Raytheon, TI, Aether	(Essentially \$0 as of 1998)	\$40-\$120
Other	Actuators, Microrelays, Humidity Sensors, Data Storage, Strain Sensors, Microsatellite Components	Boeing, Exponent, HP, Sarcos, Xerox, Aerospace, SRI, Hughes, AMMI, Lucas Novasensor, Sarnoff, ADI, EG&G IC Sensors, CP Clare, Siemens, ISSYS, Honeywell, Northrop Grumman, IBM, Kionix, TRW	\$510-\$1050	\$1230-\$2470

Companies with past contracts.

The Future

- Continue existing commitment
 - Maturing projects
 - ➤ New thrust: Micro Power Generation
- Emphasize transition
 - ➤ Into DoD systems
 - Into industry
- Establish new programs
 - Programs enabled by MEMS

